(CS-233 Theoretical Exercise 9

April 2024

1 Convolution - Computation

Let us denote an image as X. We can index a pixel z in this image as © = X, (or equivalently in a more
programming-oriented format X[i, j, c]), where 14, j, ¢ are the indices for height (H), width (W), and channel
(C), respectively.

Now let us consider a 2D convolution kernel K, with parameters {k | k = K;;.} and height Hg, width
Wik, and number of channels C'x,. We want to compute the convolution of this kernel with the input image
X. Assume that we use stride s and padding p.

Question 1 [feature map size]: Give the expressions of the height, width, and number of channels of
the output feature map. Assume that the stride s is carefully chosen so that the kernel convolves the image
entirely, without any margin.

Solution:
Hp =(H—-Hg +2p)/s+1

Wp =W - Wk +2p)/s+1
Cp=1

Here we assume that (H — Hx + 2p)/s and (W — Wy + 2p)/s are integers.
Question 2 [computation cost]: Now instead of a single kernel, we have C,,; convolution kernels. If we
just consider multiplication as one operation, how many operations are needed for the overall computation?
Compare it to the number of operations we need if the output feature map is produced by a fully-connected
layer instead (you can omit the bias).

Solution:

Convolution: Cy i HrpWrHgWiC
Fully-connected: Coi HpWrHW C
The number of operations is reduced by a factor of %

Question 3 [alternative view of convolution]: Now consider a different problem: We have a black
canvas of size 50 x 50 with two white points at positions [20, 40] and [40, 20| (index starting from 0, shown
in Fig. [I). We would like to obtain two Gaussian blobs (of size 10 x 10) centered at the two white points, as
shown in Fig. 2] Write pseudo-code to do so with only a convolution.

Solution:
This can be achieved by convolving a Gaussian image with the original canvas. The following is a working
code example:

import numpy as np
from scipy import signal

canvas = np.zeros((50, 50))
canvas|20, 40] = 1



Figure 1: Black canvas with two white points

Figure 2: Desired output



canvas|40, 20] = 1

guassian _1d = signal.gaussian(50, std=>5)
gaussian_2d = gaussian__1d.reshape(-1, 1) @ gaussian_1d.reshape(1, -1)
result gaussian = signal.convolve2d(canvas, gaussian 2d, mode=’same’)

2 Convolution - Optimization

Question 4 [David’s CNN]: David designed a CNN for dog/cat classification. He stacked multiple con-
volutional, average pooling, and fully-connected layers. However, he didn’t use any non-linear activation
functions, except for the last softmax operation. He believes that his CNN will surely outperform a simple
logistic regression in terms of training loss. Explain why this is not correct.

Solution: A network without any non-linear operations is purely linear, thus a subclass (because the
parameters are constrained) of logistic regression in this case. Therefore, the training loss of David’s CNN
will be strictly higher than or equal to a simple logistic regression, assuming proper optimization.

Now, let us go back to the basic case of convolution between an input image X and one filter K, with
no padding and a stride of 1. The output feature map is denoted as F'. To simplify the case even further,
let us assume that the input image only has 1 channel.

To optimize the filter K, we need to compute %, which is a function (denoted as gr) of % and X.
To perform an adversarial attack on the input X, we need to compute j—)fg, which is a function (denoted

as gx) of 9% and K. Note that all these gradients are in matrix form, e.g., 4% is a matrix with elements dd?L”.
Question 5 [gradient of the filter]: As mentioned above, % = gK(%,X). What is gx (expressed in
terms of % and X)? You should be able to get a very simple expression. Hint: Consider a 3x3 input with
a 2x2 kernel, write down the expression of the elements in the output feature map (2x2), and compute the
gradient. This should give you something interesting.

Solution: 4£ = convolve (4%,
See [these slides| for an illustration.
Question 6 [gradient of the input image|: As mentioned above, % = gx(%,K). What is gx? You
should obtain a slightly more complex expression than in the last question. Hint: Consider a kernel, denoted
as K., corresponding to K rotated by 180 degrees.

X), where we regard % as the kernel and X as the input.

Solution: Let dF be the result of zero-padding 4L with (Hx — 1) and (Wgk — 1) elements on the height
and width respectively. B B
We have: % = convolve(dF, K, ), where we regard K,,; as the kernel and dF' as the input.

See lthese slides| for an illustration.


https://deeplearning.cs.cmu.edu/F21/document/recitation/Recitation5/CNN_Backprop_Recitation_5_F21.pdf
https://deeplearning.cs.cmu.edu/F21/document/recitation/Recitation5/CNN_Backprop_Recitation_5_F21.pdf

	Convolution - Computation
	Convolution - Optimization

